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The flow in a rotating cylinder driven by the differential rotation of its top endwall
is studied by numerically solving the time-dependent axisymmetric Navier–Stokes
equations. When the differential rotation is small, the flow is well described in
terms of similarity solutions of individual rotating disks of infinite radius. For larger
differential rotations, whether the top is co-rotating or counter-rotating results in
qualitatively distinct behaviour. For counter-rotation, the boundary layer on the top
endwall separates, forming a free shear layer and this results in a global coupling
between the boundary layer flows on the various walls and a global departure from
the similarity flows. At large Reynolds numbers, this shear layer becomes unstable.
For a co-rotating top, there is a qualitative change in the flow depending on whether
the top rotates faster or slower than the rest of the cylinder. When the top rotates
faster, so does the bulk of the interior fluid, and the sidewall boundary layer region
where the fluid adjusts to the slower rotation rate of the cylinder is centrifugally
unstable. The secondary induced meridional flow is also potentially unstable in this
region. This is manifested by the inflectional radial profiles of the vertical velocity
and azimuthal vorticity in this region. At large Reynolds numbers, the instability of
the sidewall layer results in roll waves propagating downwards.

1. Introduction
The study of flows driven between rotating disks has been and continues to be

an area of intense research for several reasons. On the one hand, these flows are of
fundamental interest as in certain limits they admit exact solutions to the Navier–
Stokes equations. Confined rotating flows have also attracted much attention as a
test-bed for contemporary ideas on the role played by low-dimensional dynamical
systems theory on the transition to spatio-temporal complexity and turbulence (e.g.
Gullob & Swinney 1975; Mullin 1993). These flows are also of practical importance
in many areas, such as rotating machinery and in models of wind-driven ocean
circulations. A good deal of the work has focused on the case of disks of infinite
radius. In the semi-infinite region bound by a single rotating disk, von Kármán (1921)
gives a solution to the Navier–Stokes equations which depends only on the scaled
distance normal to the disk. Bödewadt (1940) considered the case of flow above
a stationary disk with the outer flow in solid-body rotation, also finding that this
flow can be described by a steady similarity solution of the Navier–Stokes equations.
Batchelor (1951) generalized these solutions to describe the steady flows between two
coaxial rotating disks of infinite radius. He does not explicitly solve the governing
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equations, but using physical arguments and properties of the ordinary differential
equations that result from the similarity formulation, predicts the nature of the flow.
Stewartson (1953) also considered these flows and, particularly when the disks are
counter-rotating, drew different conclusions to Batchelor regarding the nature of
the flow. Subsequently, there have been many attempts to resolve these differences.
However, it would appear that the differences are not to be resolved in the context
of infinite disks due to the ambiguity of what happens to the flow at large radius:
the fluid that is centrifuged out by the disk boundary layers must be replaced by the
fluid in the interior between the layers, thereby establishing a secondary circulation.
However, the circuit is not complete in the infinite disk scenario.

Brady & Durlofsky (1987) presented results from an asymptotic-numerical inves-
tigation of the flow between two finite counter-rotating disks. They considered flows
with Reynolds numbers, based on the distance between the disks, up to 500 and
disk rotation ratios between 0 and −1. Their approach asymptotically matches the
interior flow between disks of large radii, compared to the distance between them, in
a boundary-layer-like formulation to that in the end region of the disks and to that
near the axis. They employed two matching conditions: ‘open’ to simulate unshrouded
disks and ‘closed’ to simulate shrouded disks. However, their ‘closed’ condition is in-
viscid and does not distinguish between a stationary and a rotating cylindrical shroud.
To a first approximation, they note that whether the shroud rotates or not makes
no difference since it is inviscid, and quote experimental observations of Dijkstra &
van Heijst (1983) that tend to support this. The results from the Brady & Durlofsky
(1987) study show that the effects of the end conditions are not confined to a region
near the end of the disks, and that the type of end condition used (open or closed) is
important in determining the form of the flow throughout the whole domain.

The experiments and numerical simulations of Dijkstra & van Heijst (1983) for the
flow between two counter-rotating disks enclosed by a cylinder revealed a dramatic
global departure from self-similar flow, this being due to the separation of the endwall
boundary layer on the slower disk to form a shear layer in the interior of the flow.

More recent interest in this class of problems comes from laboratory models used
to study the structure of vertical boundary layers in differentially rotating systems and
other processes in geophysical systems. Hart & Kittelman (1996) consider the flow
in a rotating cylinder that is driven by the differential rotation of the top endwall.
They observe a number of waves that appear in the sidewall boundary layer region
and present tentative physical arguments to explain the origin of these instabilities.
However, there is a lack of knowledge concerning the basic state of this differentially
rotating system from which to study its stability. The flow is related to the closed
system considered earlier by Brady & Durlofsky (1987) and Dijkstra & van Heijst
(1983). However, those studies only presented results for counter-rotation whereas the
instabilities reported by Hart & Kittelman (1996) were observed for co-rotation.

In the present study, we present a systematic description of the flow in a cylinder
of radius R and height H with the bottom and sidewall in basic rotation Ω, filled
with fluid of kinematic viscosity ν, that is driven by its top lid rotating at sΩ. These
parameters can be combined to give three non-dimensional numbers that govern
the flow: a Reynolds number for the basic rotation Re = ΩR2/ν, the aspect ratio
of the cylinder Λ = H/R, and the rotation ratio s. These can also be combined to
give a Reynolds number for the differential rotation Res = Λ(s − 1)Re. We see that
when s = 1, Res = 0 and the system is in solid-body rotation. Numerical solutions
over a wide range in s ∈ [−3, 3] are presented for various values of Re and Λ, with
particular emphasis placed on Re = 3 × 103 and Λ = 0.5 at which values a wide
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range of the dynamics are revealed. The solutions with Re = 3× 103 and s > −2.65
are steady, and over a small range −0.893 6 s 6 −0.853 we have found two stable
steady solutions. The two solutions are distinguished by where the shear layer that
is formed from the separation of the endwall boundary layer on the counter-rotating
top terminates. For one class of solutions it terminates in the boundary layer on the
bottom endwall and for the other it re-attaches to the counter-rotating disk. For Res
small, we find that the flow is a small perturbation of the solid-body rotation flow,
and is well described by the considerations of Batchelor (1951). For strong counter-
rotation (s < −2.7), we find a Hopf bifurcation to a limit cycle flow followed very
rapidly, with further counter-rotation, by secondary Hopf bifurcation to a two-torus
flow as well as behaviour symptomatic of homoclinicity/hetroclinicity of the Šil’nikov

type (Šil’nikov 1965), as the separated shear layer becomes unstable. We also present
some results at higher Re, but with Res small that coincide more closely with the
parameter regimes considered by Hart & Kittelman (1996). For these, unsteadiness
sets in for small positive s− 1 as a result of sidewall layer instability.

In the following section we formulate the problem and briefly describe the method
of its numerical solution. In §3 we consider the flow in the Stokes limit Re → 0,
but with finite s, to gain an understanding of the basic structure of the flow. Section
4 describes the steady flows that result for co-rotation of the top and how these
relate to the similarity solutions. Section 5 considers the counter-rotating top case,
with an emphasis on the steady flows. Section 6 describes the onset of axisymmetric
instabilities in the counter-rotating top case, and §7 considers the instability of the
sidewall boundary layer for a co-rotating top.

2. Problem formulation and its numerical solution
Consider the flow in a completely filled cylinder of fluid with kinematic viscosity ν

of radius R and height H with the bottom and sidewall rotating at a constant angular
speed Ω and driven by the rotation of its top at angular speed sΩ. Using R as the
length scale and 1/Ω as the time scale, the flow is governed by three non-dimensional
parameters: Re = ΩR2/ν, the Reynolds number for the basic rotation, Λ = H/R, the
aspect ratio, and s, the rotation ratio.

These can be combined to give other common non-dimensional groups, such as
the Ekman number Ek, where Ek−1 = Λ2Re, and the the Rossby number Ro = s− 1.
A Reynolds number for the differential rotation in the enclosed cylinder may also be
defined as Res = ΛRoRe.

Here, we only consider the axisymmetric flow in order to gain an understanding of
its basic features to facilitate the identification of the mechanisms responsible for its
instability. The flow is governed by the axisymmetric Navier–Stokes equations that
we write using a cylindrical polar coordinate system in the non-rotating frame (r, θ, z)
with the corresponding velocity (u, v, w). We introduce the Stokes streamfunction ψ,
where u = −1/r∂ψ/∂z and w = 1/r∂ψ/∂r, and the circulation function Γ = rv
(angular momentum). Contours of ψ and Γ in a meridional plane give the cross-
sections of streamsurfaces (streamlines) and vortex surfaces (vortex lines) in that
plane. The azimuthal component of vorticity η is written in terms of ψ as

∇2
∗ψ = −rη, (2.1)

where
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The Navier–Stokes equations in terms of Γ , η, and ψ are

DΓ =
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∗Γ , (2.2)
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The governing equations are actually solved in primative form, i.e. velocity–pressure,
but the discussion of results is more natural in terms of ψ, η, and Γ . The numerical
technique uses a spectral projection scheme designed specifically for axisymmetric
systems in cylindrical polars (Lopez & Shen 1998). It uses a second-order projection
scheme for time discretization and a new spectral-Galerkin approximation (Shen 1997)
for the spatial discretization. Here, we use n Legendre polynomials in the axial and m
Legendre polynomials in the radial direction. The spectral-Galerkin method is based
on a variational formulation that naturally incorporates the coordinate singularity
at the axis. The boundary conditions on the cylinder endwalls and sidewall are
no-slip. Note that the differential rotation between the top and the sidewall leads
to a discontinuity in v at the corner where they meet. This singularity is treated
appropriately with a new procedure that produces mesh-independent approximations
to the singular boundary condition to within any prescribed accuracy. The details of
the scheme implementation and a detailed comparison with a standard second-order
in time and space finite-difference scheme for a problem related to the present one
is given in Lopez & Shen (1998). A key feature of the scheme, particularly useful
for time-accurate solutions, is that it is absolutely stable in that the time step δt
for stability of the scheme does not depend on the spatial resolution used; it does
however depend on the Reynolds number (in this flow, the appropriate Reynolds
number is Res = ΛRoRe). Extensive tests have been performed to ensure solutions
that are independent of space and time discretizations in the present study guided by
a similar study for a related problem in Lopez & Shen (1998). Table 1 lists the time
and space resolutions used in the various parameter ranges reported here.

Two classes of initial conditions have been considered. For most cases, the compu-
tations were started impulsively from a state of solid-body rotation and evolved in
time until either a steady state or a time-periodic state were reached (for non-periodic
cases, the system was evolved for long times). The other type of initial condition
corresponds to a continuation, where a steady state at one value of the parameter
(usually s) is used as the initial condition for an impulsive small change in the pa-
rameter. This second type of initial condition was used to follow particular solution
branches in parameter regimes where multiple solutions exist.

3. Low-Re limit
The matching between the endwall layers and the sidewall layer is non-trivial,

regardless of the aspect ratio of the system. In their study of confined differentially
rotating systems, Mundt, Hart & Ohlsen (1995) conclude that the presence of the
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Λ Re s δt n m

0.5 6× 104 0.6 6 s 6 1.05 1.0× 10−2 128 256
0.5 6× 104 s = 1.20 7.5× 10−3 128 256
0.5 6× 104 s = 1.35 5.0× 10−3 128 256
0.5 6× 104 s = 1.50 2.5× 10−3 128 256
0.5 3× 103 0.6 6 s 6 2.0 1.0× 10−2 64 128
0.5 3× 103 −2.0 6 s 6 −0.65 5.0× 10−3 64 128
0.5 3× 103 s = 3.0, −3.0 6 s 6 −2.2 2.5× 10−3 64 128
0.5 1× 103 −1.5 6 s 6 2.0 5.0× 10−2 48 96
0.5 1× 103 s = 2.5, s = −2.0 2.5× 10−2 48 96
0.5 1× 103 s = 3.0, −2.5 6 s 6 −2.25 1.25× 10−2 48 96
0.5 1× 103 −3.0 6 s 6 −2.75 6.25× 10−3 48 96
0.25 1× 103 −1.7 6 s 6 2.2 5.0× 10−2 24 96
0.25 1× 103 s = 2.4, −1.9 6 s 6 −1.8 2.5× 10−2 24 96
0.25 1× 103 2.6 6 s 6 3.0, −2.5 6 s 6 −2.0 1.25× 10−2 24 96
0.25 1× 103 −3.0 6 s 6 −2.6 6.25× 10−3 24 96
0.125 1× 103 −0.5 6 s 6 1.2 5.0× 10−2 24 96
0.5 5× 102 −0.6 6 s 6 1.2 5.0× 10−2 32 64
0.5 3× 102 −0.6 6 s 6 1.2 5.0× 10−2 32 64

Table 1. Spatial and temporal resolution used

viscous sidewall boundary layer generally appears to have a global effect on the
dynamics, and its inclusion is essential for accurately simulating the laboratory flows.
Although Brady & Durlofsky (1987) are correct that for an inviscid sidewall it makes
no difference, to a first approximation, whether it is rotating or not, when the sidewall
is no-slip the state of its rotation has a global effect. The singular corners where
the endwalls and sidewall meet are a source or sink for the vortex lines, as are the
rotating endwalls. The global structure of the flow, for all Re, depends critically on
whether the sidewall rotates or not. We illustrate this in the case of Stokes flow
(Re → 0), where a closed-form solution exists (Khalili & Rath 1994), in figure 1
where the vortex lines (contours of Γ = rv) are drawn when the sidewall co-rotates
with the bottom (figure 1a–d) and when it is stationary (figure 1e–h) for s = 2, 1, 0,
and −1. In this study, to investigate the effect of a differentially rotating top on a
rotating system, we have the sidewall co-rotating with the bottom endwall. One of
the main implications of this is that there is only one value of s for which the system
has reflection symmetry about the midplane, Z2-symmetry, that being s = 1. If the
sidewall were stationary, then Z2-symmetry would be preserved by the geometry for
s = ±1.

The flow at low Re is steady and unique. However, as Re is increased a secondary
meridional circulation is produced by the centrifuging of fluid adjacent to the rotating
endwalls. This secondary flow interacts with the primary flow leading to further
nonlinear interactions as the vortex lines are stretched and bent. As will be further
described in the following sections, various instabilities arise as a result, leading to
non-uniqueness and unsteady behaviour. In their inviscid treatment of the sidewall,
Brady & Durlofsky (1987) note that for counter-rotation (s < 0), especially for large
Re, there is some degree of ambiguity regarding the behaviour of the flow near the
sidewall, but claim that the details are not important as the effects were found to be
local. We find however, that the presence of a no-slip sidewall is felt globally.
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(a) s = 2 (e) s = 2

(b) s = 1 ( f ) s = 1

(c) s = 0 (g) s = 0

(d ) s = –1 (h) s = –1

Figure 1. Contours of Γ for the Stokes flow (Re = 0) between rotating disks with the top disk
rotating s times the rate of the bottom disk, with the sidewall co-rotating with the bottom (a–d)
and with the sidewall stationary (e–h). Contour levels are set so that leveli = C(i/20)2, i = 1→ 20,
where C = ±2, positive (negative) contours are solid (broken) and the zero contour is also drawn
solid. In all contour plots, the left boundary is the axis (r = 0), the right boundary is the cylinder
sidewall (r = 1), and the top (z = Λ) and bottom (z = 0) boundaries are the rotating disks.

4. Co-rotation of the top disk
For Re ∼ O(103) and Λ = 0.5, the dynamics of the flow are effectively summarized

in figure 2, which is a plot of vmid = v(0.5, 0.5Λ) at steady state vs. s for Re = 103

and 3 × 103. The dotted line is half the arithmetic mean of the angular velocities of
the top and bottom disks. This line is tangent to the vmid vs. s curve at s = 1, where
the flow is in solid-body rotation. Lance & Rogers (1962) have considered the flows
between infinite disks, i.e. no influence of the sidewall, by numerically solving the
similarity form of the steady axisymmetric Navier–Stokes equations. They found that
at high Reynolds numbers the main core of the flow is in solid-body rotation with a
slow drift in the axial direction from the slower to the faster disk. Furthermore, they
observed that the fluid between the two disks rotates at a rate intermediate between
those of the top and bottom disks and that the axial flow out of the boundary
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Figure 2. vmid vs. s for Re = 103 and 3× 103, and Λ = 0.5. The dotted line is half the
arithmetic mean of the rotation rates of the two disks.

layer on the slow disk exactly matches the axial flow into the boundary layer on
the faster disk. The rate of rotation of the bulk flow that achieves this ‘detailed
matching’ deviates from one half the arithmetic mean of the angular velocities of
the top and bottom disks as s in increased or decreased from 1. Rott & Lewellen
(1967) present graphically this rotation rate for 0 6 s 6 1 in their figure 6. The
behaviour is in very good agreement with that shown in our figure 2. The discussion
in Rott & Lewellen does not indicate to which Re the results correspond, but Lance
& Rogers indicate that the system becomes asymptotically independent of Re, the
asymptotic results typically being obtained by Re ∼ 103 or lower for the range of s
considered. The effects of a rotating no-slip wall were also approximately accounted
for by Rott & Lewellen when the top is stationary (s = 0) using a momentum-integral
method and looking for detailed matching. Their result agrees well with experimental
measurements of Maxworthy (1964) for Re = 2 × 104 and with numerical solutions
of the Navier–Stokes equations over a range 103 6 Re 6 105 (Lopez 1996). The
results from the present spectral-projection numerical method also agree with the
finite difference results presented in Lopez (1996).

The low-Re results from the previous section show that detailed matching is only
achieved in the immediate neighbourhood of s = 1. As Re is increased, we find
from our Navier–Stokes computations that detailed matching is achieved over an
increasingly larger radial extent and for increasingly larger |s− 1|. Figure 3 shows the
streamfunction ψ, the azimuthal vorticity η, and the angular momentum Γ for s = 3,
1.5, 0.5, and 0, Re = 3 × 103, and Λ = 0.5. This represents a large deviation from
the state of solid-body rotation, but as indicated both by the contours in figure 3
and the curve vmid vs. s in figure 2, the basic features of these flows are qualitatively
consistent with the similarity considerations of disks of infinite radius. The boundary
layers on the disks and the sidewall are well demarcated by the regions of non-zero
η; the interior is in solid-body rotation with a slow axial drift from the slow to the
fast disk; away from the sidewall boundary layer there is detailed matching with the
streamlines (ψ) and the vortex lines (Γ ) both being independent of z; the radial flow
in the boundary layer of the fast disk is outwards, and inwards for the slow disk;
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(a) s = 3.0 (b) s = 1.5

(c) s = 0.5 (d ) s = 0

Figure 3. Contours of ψ (top), η (middle) and Γ (bottom) for Re = 3 × 103, Λ = 0.5 and s as
indicated. Contour levels are set so that leveli = C(i/15)3, i = 1 → 15, where C = ±0.01 for ψ,
C = ±25 for η, and C = ±3 for Γ ; positive (negative) contours are solid (broken).

both the streamlines and the vortex lines have oscillations as they leave or enter the
disk boundary layers, the oscillations near the slower disk being greater.

Figure 4(a) gives radial profiles of v/r at z = 0.5Λ for a large range in Re and for
various s near s = 1. This figure is indicative of the extent to which the flow is in
solid-body rotation and gives a clear indication of the transition between the rotation
rate of the interior and the rotation rate of the sidewall. Further, it indicates that
the rotation rate of the interior is independent of Re for Re > 500, as suggested by
the results of Lance & Rogers (1962). Figure 4(b) gives radial profiles of v/r with
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Figure 4. Radial profiles of v/r at (a) z = 0.5Λ for various Re and (b) Re = 103 for various Λ,
and s as indicated.

Re = 103 and Λ = 0.5, 0.25, and 0.125. From this figure, we see that the rotation rate
of the interior is also independent of Λ, so it is independent of H , R, and ν and is
determined solely by s; this is true for co-rotation and when the boundary layers are
stable and sufficiently well defined so that the interior is essentially irrotational. When
this is all true, then the suggestion of Batchelor (1951) and Lance & Rogers (1962),
based on considerations of co-rotating disks of infinite radius, that the interior flow
consists of matching solutions of single disk flows, also holds in the case of finite-
radius shrouded disks. Whereas the thickness of the boundary layers on the disks
is independent of Λ (e.g. see figure 5, where η for various Λ is given), the sidewall
boundary layer thickness varies with Λ (figure 4), i.e. the separation between the disks
is a relevant length scale for the sidewall but not for the disk boundary layers.

Section 7 describes how the sidewall layer becomes unstable as both s and Re are
increased: for s > 1 the interior is rotating faster than the sidewall and for larger Re,
the adjustment is over a smaller radial distance. For s < 1, but positive, the sidewall
layer is centrifugally stable. From the contours of η in figure 3, it is clear that the
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(a) Λ = 0.5

(b) Λ = 0.25

(c) Λ = 0.125

Figure 5. Contours of η for Re = 103, s = 1.2, and Λ as indicated.
Contour levels are set as in figure 3.

radial profile of η as it approaches the sidewall is oscillatory (and hence has inflection
points) for s > 1 and is monotonic for s < 1.

5. Counter-rotation of the top disk
In the previous section, we found that for co-rotation the numerical solutions for

the shrouded cylinder agree quite well with the similarity solutions for infinite-radius
disks, so long as the sidewall layer does not become unstable. For counter-rotation, we
do not find this level of correspondence with the similarity solutions. It is interesting
that for counter-rotations with s < −0.15 similarity considerations of the infinite
unbounded disk have problems with non-uniqueness and convergence (Zandbergen
& Dijkstra 1977). Dijkstra & van Heijst (1983) suggest that the presence of a sidewall
eliminates the non-uniqueness in the similarity solutions. However, the Navier–Stokes
computations suggest that similarity is not appropriate for s < 0, as there are many
sources of instabilities and even when the flow is steady, it is not close to being
self-similar, unlike the situation for s > 0 noted in the previous section.

In his consideration of the flow between counter-rotating disks of infinite radius,
Batchelor (1951) notes that there exists a plane, a transition layer, where v = 0 between
the two disks. In describing their numerical solutions of the similarity equations for
flow between a rotating disk and fluid in solid-body rotation where the ratio of the
rotation of the fluid to that of the disk is s∗, Rogers & Lance (1960) note that when
s∗ > 0, the solutions converge to physically sensible results. However, for s∗ < 0, they
observed that the boundary layer on the disk seemed to move away from the disk
and that large shears appeared in the body of the fluid. Further, when s∗ < −0.2,
they were unable to obtain steady solutions unless they imposed suction at the disk
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to prevent the boundary layer from leaving the disk. For −0.2 < s∗ < 0, they obtain
steady self-similar solutions, but comment that they appear anomalous.

The difficulties encountered in the similarity formulation for s < 0 associated with
the apparent lifting of the boundary layer are paralleled in the flows between shrouded
counter-rotating disks. Dijkstra & van Heijst (1983) observed in their computations
that the boundary layer flow on the slower disk develops a stagnation ring and
that the boundary layer separates, forming a shear layer along which the velocity is
jet-like. They also matched the radial location of this stagnation (separation) ring
from their Navier–Stokes computations with experimental measurements over the
range −1 < s < 0. For their small-aspect-ratio flows (Λ = 0.07), they found that the
meridional shear layer (ψ = 0) and the azimuthal transition layer (Γ = 0) separating
the counter-rotating bodies of fluid, did not coincide. In our computations with
Λ = 0.5 and with effective Reynolds numbers in the same range as Dijkstra & van
Heijst, we find that the two shear layers, ψ = 0 and Γ = 0, coincide in the interior
outside the disk and sidewall boundary layers.

In contrast to the co-rotating case, when the disks counter-rotate the distance
between them has a profound global and local influence on the flow. Figure 6 gives
the flows for Re = 103 and s = −0.5 with Λ = 0.5, 0.25, and 0.125. The most striking
global effect of the aspect ratio is on the separation of the boundary layer on the
counter-rotating disk. At the larger Λ, the layer separates forming a free shear layer
that enters into the interior. This separation layer consists of shear in the meridional
flow (ψ = 0) and in the interior this layer coincides with the azimuthal transition
layer (Γ = 0). For Λ = 0.25, the interior region is much reduced and the ψ = 0
separation does not coincide with the Γ = 0 separation anywhere. As Λ is further
reduced to 0.125, the boundary layers on the two disks are virtually merged together
and there is no ψ = 0 separation. On a more local level, we find that the boundary
layer on the bottom disk has a boundary layer whose thickness varies with Λ. This is
in contrast to the co-rotating case where the thickness is independent of Λ. So, in the
counter-rotating case there is a strong coupling between the two disks, their proximity
strongly influencing the qualitative nature of the flow in the boundary layers of both
disks, whereas for co-rotation the coupling is much weaker. In that case the coupling
only enforces a detailed matching between the two, and so long as there is sufficient
separation so that distinct boundary layers are formed, the distance separating the
two plays essentially no role in the nature of the flow.

Dijkstra & van Heijst (1983) were unable to get reliable results in the range
−1 6 s < −0.825. Now we present steady results for −2.265 6 s < 0 with Re = 3×103

and Λ = 0.5, these being on two distinct solution branches distinguished by the fate
of the separated shear layer. In the following section, flows with s < −2.265 are
considered where the shear layer is observed to become unstable.

We have continued the solution branch described in §4 to negative s for both
Re = 103 and 3 × 103 with Λ = 0.5 and Re = 103 with Λ = 0.25. We have already
seen in figure 3(d) for s = 0 that the boundary layer on the stationary disk has
thickened considerably in comparison with the layer for s > 0, and is thickest as
r → 0. As soon as s becomes negative, Γ in the region closest to the counter-rotating
disk also becomes negative, thus creating an azimuthal transition layer. This layer
originates at the singular corner where the sidewall and counter-rotating disk meet,
and terminates somewhere on the axis. For small |s|, this layer resides entirely within
the counter-rotating disk’s boundary layer (see figure 7a for s = −0.15, Re = 3× 103,
Λ = 0.5). For s ≈ −0.2, the azimuthal transition layer is not wholly contained within
the disk boundary layer, but leaves it at a small r (as also observed by Dijkstra &
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(a) Λ = 0.5 (b) Λ = 0.25

(c) Λ = 0.125

Figure 6. Contours of ψ (top), η (middle), and Γ (bottom) for Re = 103, s = −0.5, and Λ as
indicated. Contour levels are set as in figure 3.

van Heijst 1983) and the meridional flow also separates, forming a stagnation ring on
the disk and the meridional shear layer. The ψ = 0 line in figure 7(b) for s = −0.25,
Re = 3 × 103, and Λ = 0.5 clearly demarcates this shear layer. For s > −0.3 and
Re = 3× 103, Λ = 0.5, the two layers terminate on the axis, yet for stronger counter-
rotation they terminate in the boundary layer on the bottom disk. This behaviour is
illustrated in figures 7(c) and 7(d) for s = −0.5 and s = −0.75 with Re = 3× 103 and
Λ = 0.5.

For larger |s| and Re, the meridional shear layer becomes narrower and more
jet-like; it advects the vortex lines with it locally, so that the azimuthal transition
layer develops shear in the azimuthal velocity. This shear, for sufficiently large |s| and
Re, could lead to azimuthal symmetry breaking. The inclination of the layers to the
rotation axis can also be expected to play a role in the symmetry breaking. These
important aspects of the flow dynamics are deferred to a future investigation where
non-axisymmetric flows are considered.

Figure 8 gives vmid vs. s for counter-rotation with Re = 103 and 3 × 103 with
Λ = 0.5 and Re = 103 with Λ = 0.25, continuing the curves in figure 2 to negative
s. For −0.893 6 s 6 −0.853, depending on the initial conditions, the system with
Re = 3× 103 and Λ = 0.5 may evolve to one of two distinct steady states. Contours
of the flows at the ends of the hysteresis region are shown in figure 9. The structure of
the sidewall boundary layers for the two branches is very similar, as is the structure
of the shear layer near where the disk boundary layer separates. What distinguishes
the two solutions is where their shear layers terminate. For the branch 1 solutions, it
terminates in the bottom disk’s boundary layer, whereas for the branch 2 solutions,
the shear layer re-attaches itself to the boundary layer of the disk from which it
separated. It is also apparent that the two branches are connected by an unstable
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(a) s = –0.15 (b) s = –0.25

(c) s = –0.50 (d ) s = –0.75

Figure 7. Contours of ψ (top), η (middle) and Γ (bottom) for Re = 3× 103, Λ = 0.5 and s as
indicated. Contour levels are set as in figure 3.

branch. The three solutions originate at a cusp at a lower Re; for Re = 103 and
Λ = 0.5, we see from figure 8 that there are no folds and that the solution undergoes
a smooth transition as s is reduced. When viewed as a solution manifold in Re–s,
all the steady solutions found are on the one solution manifold that has a fold (see
schematic in figure 10). Similar folded solution manifolds have been identified in other
swirling flows (Beran & Culik 1992; Lopez 1994). At low Re, the boundary layers are
quite diffuse as is the separated shear layer.

For s < −1.05 with Re = 103 and 3× 103, and Λ = 0.5 the meridional shear layer
(ψ = 0) no longer separates from the counter-rotating endwall but instead separates
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Figure 8. vmid vs. s for Re and Λ as indicated. The dotted line is half the arithmetic mean
of the rotation rates of the two disks.

from the sidewall. Recall that the azimuthal transition layer (Γ = 0) separates at the
singular corner (r = 1, z = Λ) for s < 0 and all Re and Λ. This qualitative change in
the solution is smooth and continuous: for Re = 103 it occurs along the only solution
branch that has been found, and for Re = 3× 103 it occurs on branch 2 for stronger
counter-rotation than that where the fold with hysteresis occurs. The smoothness
of the transition is indicated in the vmid vs. s curves (figure 8) and verified by the
smooth and continuous changes in ψ, η, and Γ through the transition. Following
the transition, i.e. from separation on the counter-rotating endwall to separation on
the sidewall, there is a flattening of the vmid variation with s and it has a strong
dependence on Re and Λ.

Figure 11 gives the steady flows for s = −1 and −2 and Re = 103 and 3 × 103.
For the same s, the region of fluid that is counter-rotating is thinner for the larger
Re. This is a direct consequence of the rotating sidewall which attempts to keep the
interior flow in solid-body rotation and is more successful in doing so as Re increases
(until instabilities set in). One would not expect this to be the case if the sidewall
were stationary. For Re = 3 × 103, the meridional shear layer becomes unstable
with s < −2.265. Some details of this instability are given in the following section.
However, for Re = 103 viscosity suppresses this instability and the flow remains
steady for the largest counter-rotation considered (s = −3.0). The steady solution at
s = −3.0, Re = 103 is given in figure 12, along with an instantaneous view of the
unsteady flow at s = −3.0, Re = 3× 103.

6. Instability of the separated shear layer
We have investigated the separated shear layer in some detail only for Re = 3×103

and Λ = 0.5. It should be noted that these flows are governed by three parameters, s,
Re, and Λ, and so a full appreciation of their dynamics requires variations in all three.
Low-dimensional dynamical systems governed by three parameters are considerably
more complicated than those governed by only one or two. We shall show behaviour
that is suggestive of such low-dimensional systems, but a rigorous connection awaits
further work.
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(a) s = – 0.853, branch 1 (b) s = –0.853, branch 2

(c) s = – 0.893, branch 1 (d) s = –0.893, branch 2

Figure 9. Contours of ψ (top), η (middle) and Γ (bottom) for Re = 3× 103, Λ = 0.5 and s as
indicated at the two ends of the hysteresis range. Contour levels are set as in figure 3.

Figure 13 provides an overview of the development of the flow as s is reduced from
−2.265. The phase diagrams in figure 13 are of vmid vs. v̇mid, its time rate of change.
All the power spectral densities (PSD) are determined with at least 218 samples of
vmin, spaced δt = 0.0025 apart, which is the time-step used in these computations,
and a Hamming window is utilized. One should note that the radius of the limit
cycles in these figures is not a good measure of the amplitude of the oscillatory states.
This is because the phase diagrams are constructed from a time series at a fixed
physical location and the oscillations may or may not be large near this location.
The oscillations correspond to an instability of the shear layer: how this influences
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Re = 3×103
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Re

s

Figure 10. Schematic of the steady solution manifold in Re – s.

vmid is not simple as the location of the shear layer varies with s. So, the amplitude
information here, while accurate, is not useful for analysis of the dynamics. However,
the frequency content of the temporal information is both accurate and relevant, and
the resulting phase diagrams are useful diagnostics of the qualitative nature of the
dynamics.

The steady flow described in §5 becomes unstable to a limit cycle flow for s ≈ −2.27,
and by s = −2.325 we have flow on a two-torus. The frequency of the limit cycle flow
remains one of the frequencies of the two-torus flow. We shall denote this frequency
ω1 and note that it varies smoothly with s (we did not investigate its variation with
either Re or Λ). The second frequency ω2 does not vary with s as much as ω1 does.
For the range of s considered, the ratio ω1/ω2 varies between approximately 6 and
4, with the two frequencies alternately being commensurate and incommensurate as
s is varied, showing evidence of frequency locking. As well, we find windows in s
where the flow is periodic with its PSD consisting only of ω1 and superharmonics.
At s = −2.400, the flow is periodic and there is no signal corresponding to ω2. At
s = −2.500, the flow has ω1 and ω2 in an almost 4 : 1 ratio together with sidebands
of the form ω2 ± n(ω1 − 4ω2), leading to complicated dynamics. At s = −2.600,
the ratio ω1/ω2 is 4, the sidebands have disappeared, and the flow is once again
periodic. For s = −2.700 and s = −2.800, the flow consists of two main signals ω1

and ω2 in an almost 4 : 1 ratio with the sidebands providing very low-frequency
modulations. This is also evident from the short time sequence of vmid provided in
the figures. The time sequence for s = −2.800 clearly shows that the signal almost
repeat itself approximately every 19.7 time units (corresponding to ω2 ≈ 0.05), with
four major oscillations over that period (corresponding to ω1 ≈ 4ω2), but the signal
is not precisely repeated. This is seen most clearly in the phase diagram and in the
PSD where there are peaks at ω < ω2. It is difficult to fully resolve the PSD here,
even with a very long time series consisting of 219 data points. However, some of the
dynamics can be inferred from the phase diagram. The phase diagrams in figure 13
suggest a smooth development as s is reduced from −2.27 to −2.8, and we now
explore this development by looking at the whole flow rather than the time series of
one component of the velocity at one point in the flow.

The dynamics of the flow for s < −2.27 are essentially determined by the dynamics
of the separated shear layer and its interactions with the boundary layers. For
s ≈ −2.3, the shear layer re-attaches itself to the boundary layer on the counter-
rotating disk, as described in §5; however, for these values of s, it becomes unstable.
We should point out again that the flow dynamics considered are restricted to the
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(a) s = –1.0, Re = 103 (b) s = –1.0, Re = 3×103

(c) s = –2.0, Re = 103 (d ) s = –2.0, Re = 3×103

Figure 11. Contours of ψ (top), η (middle) and Γ (bottom) for Λ = 0.5 and s and Re
as indicated. Contour levels are set as in figure 3.

space of axisymmetric flows, and that azimuthal instabilities are not considered in this
initial study. Undoubtedly, in some parts of the (Re, Λ, s) parameter space, azimuthal
symmetry breaking will take place, but this is an issue which has not yet been explored
either numerically or experimentally for these flows. In the space of axisymmetric
flows, the instability consists of waves originating in the shear layer and propagating
radially inwards along the boundary layer. Figure 14 gives a sequence of snap-shots
over one period, illustrating this ω1 limit cycle behaviour. These waves are very
effective in coupling the boundary layer flow on the counter-rotating disk with the
interior flow and the flow in the sidewall layer, particularly for r ∼ 0.5. For s ∼ −2.3,
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(a) Re = 103 (b) Re = 3×103

Figure 12. Contours of ψ (top), η (middle) and Γ (bottom) for Λ = 0.5, s = −3.0, and (a) Re = 103

(steady) and (b) Re = 3× 103 (‘snap-shot’ of unsteady flow). Contour levels are set as in figure 3.

the flow in the bottom disk boundary layer is not strongly influenced by these waves:
it remains almost steady and not too far removed from its state at smaller |s|.

As s becomes more negative, the amplitude of the shear layer waves increases and
their presence is felt on the bottom endwall boundary layer. This boundary layer
is now essentially being periodically forced by the waves and it responds with its
own characteristic time scale. This leads to the two-torus flow. For the range of s
considered, the ratio of the two frequencies varies between approximately 4 and 6
in a continuous fashion. The flow with s = −2.600 is an example where the ratio is
4. Here, the shear layer flip-flops from one disk’s boundary layer to the others in a
regular fashion (see figure 15), thus creating a tight coupling between the two disk
boundary layer flows. During this flip-flop mode, the shear layer responds much like
a whip being cracked every period.

As s is further reduced, the shear layer separates further down the sidewall. For
s = −2.800 the flip-flop mode described for s = −2.600 dominates, but now with
the separation occurring further down the sidewall, the mean position of the shear
layer is closer to the bottom endwall. As a result of this proximity, the shear layer
is drawn into and remains within the boundary layer of the bottom endwall for
some time. During this ‘attached’ phase, it still retains its own distinct identity and
oscillates with the ω1 frequency as it does when it resides in the interior. These
oscillations are modulated and grow sufficiently for the shear layer to escape from
the boundary layer and oscillate in the flip-flop mode in the interior. Eventually the
boundary layer suction on the bottom disk builds up and the shear layer is once again
attached to it. These sequences repeat fairly regularly, as evidenced in figure 13, but
here we find sideband modulations of the modulation frequency ω2 and the system
is weakly chaotic. Comparing the phase diagrams for s = −2.600 and s = −2.700
(which are essentially pure flip-flop modes with the mean position of the shear layer
in the interior) with that of s = −2.800, we find that at s = −2.800, the flow is in a
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flip-flop mode a good deal of the time, but that it has a weak attraction to a location
(vmid ≈ −0.3, v̇mid ≈ 0). This location represents the state when the shear layer is
primarily attached to the bottom endwall boundary layer.

By s = −3.000, the shear layer leaves the sidewall layer further down and is
attached to the bottom endwall layer. It still oscillates within the boundary layer with
a frequency ω1 and leaves the bottom boundary layer at a radial location between
r = 0.25 and r = 0.5. Superficially, the oscillatory state at s = −3.000 does not appear
too different from that at s = −2.600 (compare figures 16 and 17 showing snap-shots
of the s = −3.000 flow with figure 15 for s = −2.600), apart from the attachment
of the shear layer to the bottom disk’s boundary layer. However, a closer analysis
reveals a number of qualitative differences.

Figure 18 shows a part of the time series, the PSD, and the phase diagram for
s = −3.000. The time series reveals a very low-frequency modulation (period ≈ 145)
on top of an oscillatory state with frequency ≈ 0.22, which is the frequency associated
with the primary mode of oscillation of the shear layer ω1 (compare with ω1 for lower
s from figure 13). On top of these are further modulations. The period 145 modulation
tends to flip the oscillatory state between two states with mean vmid ≈ −0.15 and
≈ −0.25. The flipping between these two states is evident both from the time series
and the phase diagram. The snap-shots in figures 16 and 17 are sequences in each of
the two states respectively. The open circles in the time series in figure 18 correspond
to figure 16 and the open squares correspond to figure 17. It is difficult to get an
impression of the differences between the two states from the snap-shots, but an
animation using 80 frames over a period of 160 does serve to illustrate the dynamics.
During the vmid ≈ −0.15 phase, the shear layer oscillations tend to send waves radially
in towards the axis along the bottom endwall boundary layer (much as it did when it
was attached to the counter-rotating endwall layer at s = −2.300). These waves excite
waves on the axis which primarily travel from top to bottom. When the flip occurs,
the wave disturbances tend to travel not to the axis, but rather across the interior
and then radially outwards along the boundary layer on the counter-rotating disk.

The weak unstable attractor observed at s = −2.800 corresponds to the attached
mode at s = −3.000 with vmid ≈ −0.25. The mode with vmid ≈ −0.15 does not seem
to have any corresponding mode at smaller |s|. The waves travelling on the counter-
rotating boundary layer at s = −2.300 were in towards the axis, for s = −3.000 they
are outwards. The mode at s = −2.300 is in essence a mirror image of the attached
mode at s = −3.000 with vmid ≈ −0.25 (compare the phase diagrams at s = −2.5 and
s = −2.8 in figure 13).

The frequency of the period 145 modulation shown in figure 18 is quite small
compared with the primary frequency: their ratio is approximately 32. At the lower
s with the second ω2 frequency present, the ratio ω1/ω2 was between 4 and 6. The
low-frequency mode presumably appears via a secondary Hopf bifurcation, and with
its associated frequency being much smaller than that typical of the system indicates
that degeneracy may be playing a role. The types of degeneracies at low-frequency
bifurcations studied by Davis & Rosenblat (1977) for a class of low-dimension ODEs
or homoclinicity (hetroclinicity) of the Šil’nikov (1965) type may be of relevance. The
state with mean vmid ≈ −0.25 has characteristics of saddle-focus type: the trajectories
spiral in towards it (the oscillatory sections from vmid ≈ −0.15 to vmid ≈ −0.25 in the
time series) and are then rapidly and almost without oscillations ejected away from
this region of phase space to the vmid ≈ −0.25 region. The mode with vmid ≈ −0.25
is weakly unstable and the flow evolves once again towards the saddle-focus at
vmid ≈ −0.15. This type of hetroclinic behaviour obviously occurs in a space of at
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Figure 13(a–e). For caption see facing page.
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Figure 13. (i) Time series over 50 time units, (ii) log(PSD), and (iii) phase portrait of vmid vs v̇mid

for Re = 3 × 103, Λ = 0.5, and s as indicated. The PSD were found with 218 samples and 219 for
s = −2.80 and −2.90 spaced δt = 0.0025.
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t = τ + 0.4 τ + 0.8

τ +1.2 τ +1.6

τ +2.0 τ + 2.4

τ +2.8 τ + 3.2

Figure 14. Contours of η for Re = 3× 103, Λ = 0.5 and s = −2.300 at times as indicated.
Contour levels are set as in figure 3.

least three dimensions; the phase diagram presented in figure 18 is a projection onto
the two-dimensional space of (vmid, v̇mid).

While these aspects of the flow are interesting and deserve further investigations,
we leave that for future investigation where azimuthal symmetry breaking will also
be considered. From preliminary laboratory experiments (J. E. Hart, private com-
munication), there is strong evidence that symmetry breaking also plays a role in
determining the dynamics of these flows at sufficiently large counter-rotation. The
symmetric solutions presented here lay the foundations for further investigations of
the dynamics of these flows.

Axisymmetric computations of flow in a rotating annulus with a source/sink at the
inner/outer radial boundaries by Crespo del Arco et al. (1996) revel a qualitatively
similar sequence of transitions to those described above as the parameter driving
the secondary flow (the coefficient of mass flow rate) is increased. At low mass
flow rates, a steady solution with Z2-symmetry results and at a critical flow rate,
there is a symmetry-breaking Hopf bifurcation to a time-dependent flow where the
streamsurface that coincided with the symmetry plane prior to the transition flip-flops
between being attracted to the top and bottom rotating endwall boundary layers.
Further increases in mass flux lead to quasi-periodic behaviour, frequency locking,
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t = τ + 0.6 τ + 1.2

τ +1.8 τ + 2.4

τ +3.0 τ + 3.6

τ + 4.2 τ + 4.8

Figure 15. As figure 14 but for s = −2.600.

and eventually to chaotic behaviour. Although the details of the dynamics of the
rotating annulus with a source/sink flow and those of the present differentially driven
rotating cylinder flow are different, the two have qualitatively similar spatio-temporal
behaviour.

7. Instability of the sidewall layer
In §4, we have seen that when the top is co-rotating with the cylinder, the flow

is well described by similarity solutions of rotating disk flows, except in the vicinity
of the sidewall, and that the radial extent for which this is true grows with Re.
However, there is a limit to how large Re can go, as for sufficiently large Re the
sidewall boundary layer becomes unstable. The stability of sidewall layers under these
circumstances has only recently been investigated. Hart & Kittelman (1996) report
some experimental observations of the sidewall instabilities and offer some tentative
physical explanations for their origin, but conclude that their cause is not yet clear.
The instabilities were observed to occur when the co-rotating top was rotating faster
than the cylinder, i.e. s > 1, together with a fast basic rotation (Re ∼ O(105)). Dijkstra
& van Heijst (1983) also studied a similar differentially rotating system, but they
only studied s < 1 and Re up to ∼ O(103); they did not report any instabilities of
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t = τ +1.0 τ +2.0

τ +3.0 τ + 4.0

τ +5.0 τ + 6.0

τ +7.0 τ +8.0

Figure 16. As figure 14 but for s = −3.000.

the sidewall. For 0 < s < 1, we saw in §4 that the interior rotates as a solid body
at a rate less than the sidewall, and that the difference in rotation rates is adjusted
in a layer whose thickness depends primarily on Re and Λ, and to a much smaller
degree on s. So, for s < 1, the sidewall boundary layer flow is centrifugally stable.
Hart & Kittelman report that the instability first sets in as a series of axisymmetric
rolls that propagate down the sidewall. They note that this first instability, as well as
subsequent modes that appear at higher criticality, are qualitatively different to the
sidewall instabilities in rotating channel flows and small-gap Taylor–Couette flows.
They infer that the axisymmetric downward-traveling roll instability results from the
centrifugal instability of the sidewall when s > 1; however they also note that the
sidewall layer region also possesses a strong secondary meridional circulation driven
by the differential rotation of the top.

Figure 19 gives radial profiles at z = 0.5Λ of the azimuthal and axial components
of vorticity, η and ζ = (1/r) ∂Γ/∂r, and of the axial and azimuthal components of
velocity, w and v, for Re = 6 × 104, Λ = 0.5 and 0.6 6 s 6 1.5. The cases s = 1.35
and 1.5 are time periodic, and the profiles for these in the figure are at a particular
time; the other cases are steady. This figure leads to a number of observations. All
significant changes in the vorticity of the system occur in the boundary layers (unlike
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t = τ + 59.0 τ + 60.0

τ + 61.0 τ + 62.0

τ + 63.0 τ + 64.0

τ +65.0 τ + 66.0

Figure 17. As figure 14 but for s = −3.000.

the situation when s < 0 where boundary layer separation leads to the formation
of shear and transition layers in the interior). The structure of the sidewall layer
is qualitatively different depending on whether s > 1 or s < 1. For s = 1, there is
no sidewall layer as the fluid as a whole rotates with the cylinder and has constant
vorticity directed parallel to the rotation axis of non-dimensional magnitude 2. As s
increases (decreases) from 1, (ζ − 2) in the interior becomes positive (negative) and
essentially independent of r, except near the sidewall, where at a location that depends
weakly on s it changes sign. It is within this sidewall boundary layer region that the
axial velocity w differs in any significant way from zero (it is non-zero in the interior,
but there the axial velocity is very slow and directed from the slow to the fast disk).
For s < 1, w becomes positive and finally zero on the sidewall without a change in
the sign of curvature of its radial profile, whereas for s > 1, the radial profile of w is
oscillatory as it approaches the sidewall, with w 6 0 closest to the wall. Although w,
the induced secondary flow component, is considerably smaller than v, the primary
flow component, it can be expected to play a significant role in the dynamics of
the sidewall layer: its radial gradient makes up the overwhelming majority of the
azimuthal component of vorticity η. From figure 19, it is clear that η and ζ attain
their maximum values on the sidewall, that their magnitudes are comparable there,
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Figure 18. Detail of time series, PSD, and phase portrait of vmid for Re = 3 × 103, Λ = 0.5, and
s = −3.00. Open circles and squares in the time series correspond to the snap-shots in figures 16
and 17 respectively.

but the radial gradients in η are much greater than those of ζ. This together with
the fact that the radial profile of η for s > 1 is inflectional suggests that the sidewall
boundary layer may become unstable due to the secondary flow rather than due to
the centrifugal instability of the primary flow.

The above discussion is centred on the radial profiles at the cylinder half-height.
Although the flow in the sidewall boundary layer is not parallel, i.e. it varies with
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Figure 19. Radial profiles near the sidewall of (a) η, (b) ζ − 2, (c) w and (d) v for Re = 6× 104,
Λ = 0.5, and s as indicated.

z, this variation is not large, as is seen from the contours of η and ζ in figures 20
and 21. These figures show snap-shots over one period (≈ 2.4) of η and ζ in the
region 0.8 6 r 6 1, 0 6 z 6 Λ, for Re = 6 × 104 and s = 1.50. These correspond
approximately to the parameter values where Hart & Kittelman (1996) first observe
the axisymmetric roll mode. There appears to be some difference between their roll
instability and the axisymmetric waves in figures 20 and 21. Hart & Kittelman remark
that the rolls are observed to originate near the corner where the top meets the sidewall
and propagate down, whereas the waves in the figures originate much further down
the sidewall. They propagate in the downwards direction for the waves closest to the
wall, and they appear to be travelling along the path where w has a local extremum
(in this case directed downwards). The wave disturbance is seen to turn around when
it reaches the bottom and propagate upwards on the next extremum of w in from the
sidewall. Note that since u is so small, the extrema in w correspond to the inflection
points in η.

Related waves in boundary layer flows with a significant cross-flow component
have also been observed by Savaş (1983, 1987), Lopez & Weidman (1996), Lopez
(1996), Schouveiler et al. (1996), and Schouveiler, Le Gal & Chauve (1997). In those
cases, the boundary layer in question is the endwall layer normal to the rotation axis,
where the radial velocity u is the significant cross-flow component, w is negligible,
and η in the boundary layer is essentially due to axial (z) gradients of u and has an
oscillatory, i.e. inflectional, profile normal to the endwall. The waves were found to
propagate along the inflection points in η in the local direction of the radial velocity
(radially inwards). At sufficiently large Re, the second extremum in u in from the
endwall, with u directed radially outwards, also carried waves radially outwards. In
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t = τ +0.4 τ + 0.8 τ +1.2

τ +1.6 τ +2.0 τ +2.4

Figure 20. Contours of η near the sidewall (0.8 6 r 6 1.0) for Λ = 0.5, Re = 6× 104, and s = 1.50.
Contour levels are set so that leveli = ±10(i/15)3, i = 1→ 15; positive (negative) contours are solid
(broken).

both the endwall and the sidewall boundary layers, the observed (numerically and
experimentally) axisymmetric waves appear to be due to an inflectional instability
of the secondary flow (η). The experimental observations (Savaş 1983, 1987; Hart
& Kettelman 1996; Lopez & Weidman 1996; Schouveiler et al. 1996, 1997) find in
both cases that the first onset of instability is axisymmetric, and that as the effective
Reynolds number in each case is increased, non-axisymmetric modes are excited. It is
not yet clear whether the non-axisymmetric modes are due to a symmetry breaking
of the axisymmetric mode or if they are due to a different mechanism, as some
observations in the endwall layers (Savaş 1987; Schouveiler et al. 1997) and in the
sidewall layer (Hart & Kittelman 1996) report the co-existence of both axisymmetric
and spiral modes.
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t = τ +0.4 τ + 0.8 τ +1.2

τ +1.6 τ +2.0 τ +2.4

Figure 21. Contours of ζ near the sidewall (0.8 6 r 6 1.0) for Λ = 0.5, Re = 6× 104, and s = 1.50.
Contour levels are set so that leveli = ±10(i/15)3, i = 1→ 15; positive (negative) contours are solid
(broken).

8. Summary
A systematic study of the flow produced in a filled rotating cylinder by the

differential rotation of its top endwall is presented. Qualitatively different phenomena
are found as the differential rotation, measured by s, the ratio of the rotation rate of
the top to that of the cylinder, is varied. For s = 1 the system is in solid-body rotation
and for small deviations from s = 1, the bulk of the interior flow between the top
and the bottom disk’s boundary layers and away from the sidewall boundary layer
is well described by matching similarity solutions of single disks of infinite radius
rotating at the appropriate rates. This is so when the two disks are sufficiently apart
so that there are distinct boundary layers associated with each, and the sidewall layer
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is stable. When the top is co-rotating faster than the cylinder, i.e. s > 1, the sidewall
layer is centrifugally unstable and the radial profile of the azimuthal vorticity near
the sidewall is inflectional. At sufficiently large basic rotation rates of the cylinder,
this situation leads to an instability of the sidewall that first manifests itself as a series
of roll waves propagating down the sidewall layer.

With the top disk counter-rotating, its boundary layer separates to form a free shear
layer. This shear layer is not simple; it consists of two parts, an azimuthal transition
layer designated by the surface with Γ = 0 where the fluid rotates in opposite
directions either side of it, and a meridional shear layer designated by the surface
ψ = 0 where the fluid has a jet-like velocity profile along it. For sufficiently large Re,
the two layers coincide outside the endwall and sidewall boundary layer regions and
away from the immediate vicinity of the axis, i.e. away from regions where viscous
stresses are important, when the flow is steady. When the flow is unsteady, they do
not coincide in the interior either. The two layers will be susceptible to different types
of instabilities. The meridional shear layer can be expected to be unstable primarily to
axisymmetric disturbances, and these have been identified here resulting from a Hopf
bifurcation. The azimuthal transition layer however, is most likely to be unstable
to azimuthal disturbances. These are beyond the scope of the present investigation
and are the subject of further study. Open questions remain as to whether the layer
becomes unstable first via an axisymmetric Hopf bifurcation or via an azimuthal
symmetry-breaking bifurcation as Re, s, and Λ are varied and what are the dynamics
when the two bifurcations coincide resulting in high co-dimension bifurcations.
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